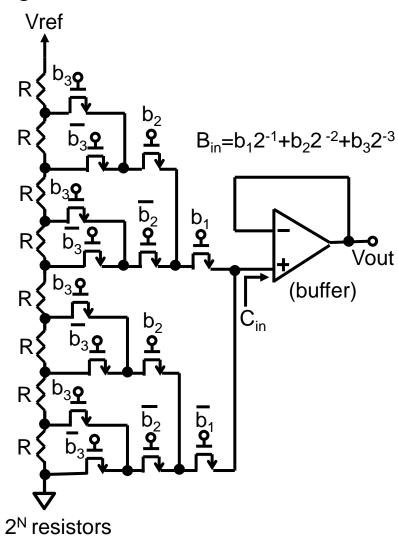
### **D/A Converters**

### Nyquist-Rate D/A Converts


- Four main types
  - ◆ Decoder-based
  - Binary-weighted
  - ◆ Thermometer-code
  - ◆ Hybrid

### Decoder-Based DAC

- Most straight forward approach
  - ◆ Create 2<sup>N</sup> reference signals and pass the appropriate signal to the output
- Three main types
  - ◆ Resistor string
  - ◆ Folded resistor-string
  - Multiple resistor-string

### Resistor-String DAC

- Example 1: a 3-bit DAC with transmission-gate, tree-like decoder
  - ◆ Transmission gates might be used rather than n-channel switches
    - Extra drain and source
       capacitance (to GND) is offset
       by the reduced switch resistance
    - Larger layout
    - Can operate closer to positive supply voltage
  - Only n-channel switches are used
    - About the same speed as the transmission gate implementation
    - Compact layout (no contacts are required in the tree)



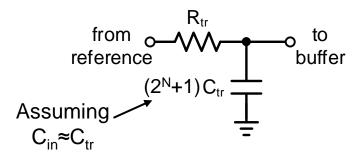
## Resistor-String DAC (Cont.)

- Monotonicity is guaranteed (if the buffer's offset does not depend on its input voltage)
- lacktriangle The accuracy of this DAC depends on the type of resistor used. Polysilicon (20-30 Ω/square) have up to 10-bit of matching accuracy.
- ◆ Speed:

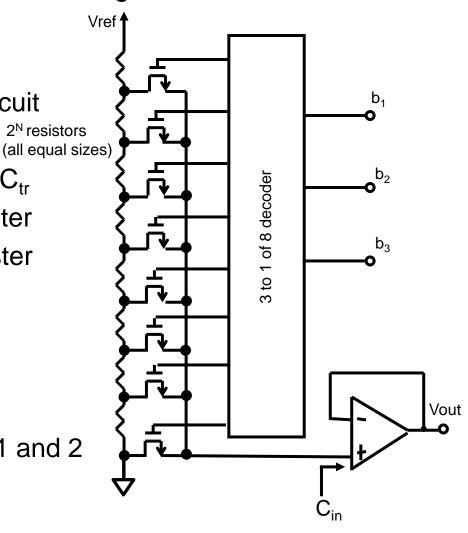
Can be estimated using open-circuit time-constant approach (refer to microelectronics textbook by Sedra and Smith V.7 p.733, Ch.9)

#### Time constant

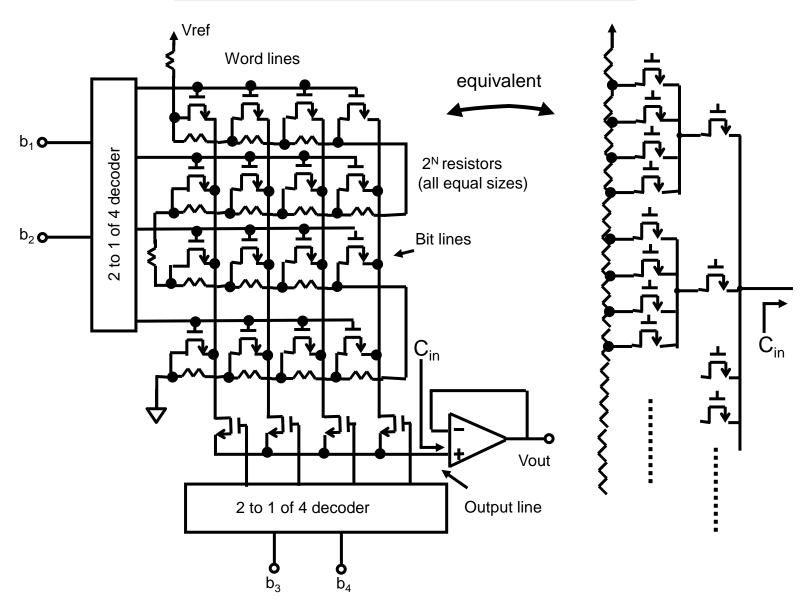
R<sub>tr</sub> is on resistance of switches
C<sub>tr</sub> is drain or source capacitance of switches
N is bit number


e.g. N=6 
$$\rightarrow$$
 63R<sub>tr</sub>C<sub>tr</sub> , N=7  $\rightarrow$  84R<sub>tr</sub>C<sub>tr</sub>

C<sub>in</sub>≈C<sub>tr</sub>

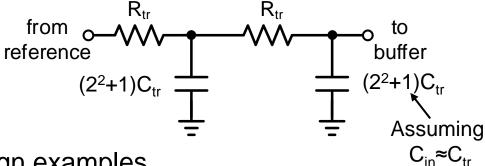

# Resistor-String DAC (cont.)

2<sup>N</sup> resistors


- Example 2: a 3-bit DAC with digital decoding
  - Compared to Example1
    - > Higher speed
    - > More area for decoding circuit
  - ◆ Speed:
    - > Time constant  $\approx R_{tr} \cdot (2^N + 1)C_{tr}$
    - > For N ≤ 6 Example 2 is faster
    - > For N > 7 Example 1 is faster



- Compromise between Examples 1 and 2
  - Folded resistor-string DAC

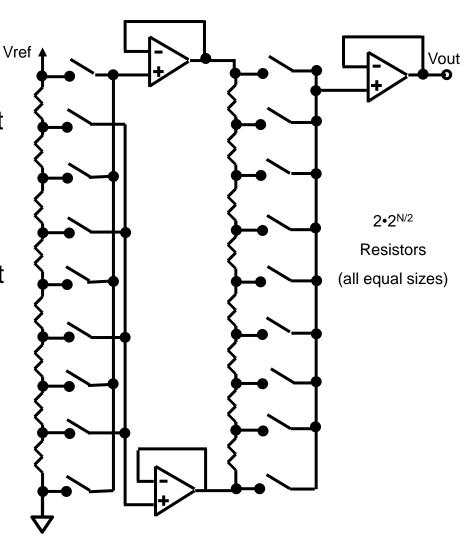



# Folded Resistor-String DAC



# Folded Resistor-String DAC (Cont.)

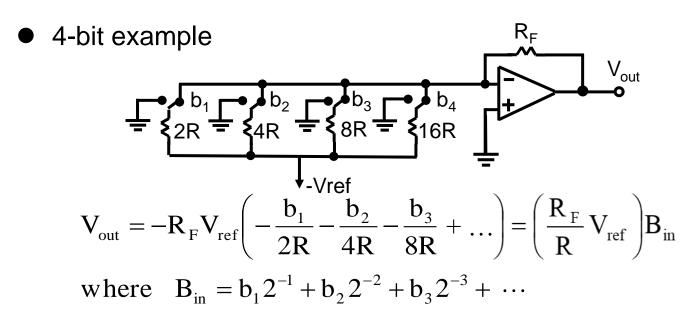
- Reduce the amount of digital decoding
- Reduce large capacitive loading
- Decoding is very similar to that for a digital memory
- Example:
  - ◆ 4 bits (=2 bits+2 bits) DAC
  - ♦ Time constant  $\approx R_{tr} (2^2+1)C_{tr}+2 R_{tr} (2^2+1)C_{tr}$




- Other design examples
  - ◆ 12 bits=6 bits+6 bits, or 4 bits+4 bits+4 bits, or.....
  - ◆ 10 bits=5 bits+5 bits, or 3 bits+3 bits+4 bits, or......

etc.

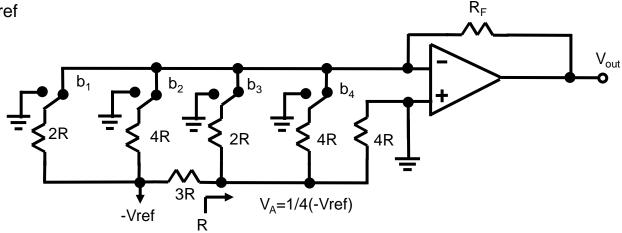
### Multiple Resistor-string DAC


- 6-bit example
- Requires only 2•2<sup>N/2</sup> resistors
- Monotonic if OPAMPs have matched, voltage-insensitive offset voltages.
- For high speed, OPAMPs must be fast.
- For high resolution, OPAMPs must be low noise.
- The matching requirements of the second resistor string are not nearly as severe as those for the first string.



### Binary-Weighted (or Binary-Scaled) Converters

- An appropriate set of signals that are all related in a binary fashion
   The binary array of signals might be voltages, charges, or currents
- Binary-weighted resistor DAC
   Reduced-resistance-ratio ladders
   R-2R-based DAC
   Charge-redistribution switched-capacitor DAC
   Current-mode DAC


### Binary-Weighted Resistor DAC



- If it does not be integrated in an IC, it would not require many resistors or switches.
- Disadvantages
  - ◆ Resistor ratio and current ratio are on the order of 2<sup>N</sup>. If N is large, this large current ratio requires that the switches also be scaled so that equal voltage drops appear across them.
  - Monotonicity is not guaranteed
  - Prone to glitches

#### Reduced-Resistance-Ratio Ladders

- Reduce the large resistor ratios in a binary-weighted array
- Introduce a series resistor to scale signals in portions of the array V<sub>A</sub>=-1/4 V<sub>ref</sub>



- An additional 4R was added such that resistance seen to the right of the 3R equals R.
- One-fourth the resistance ratio compared to the binary-weighted case
- Current ratio has remained unchanged
  - Switches must be scaled in size
- Repeating this procedure recursively, one can obtain an R-2R ladder

### R-2R-Based DAC

- Smaller size and better accuracy than a binary-sized approach
  - Small number of components
  - ◆ Resistance ratio of only 2
- 4-bit example

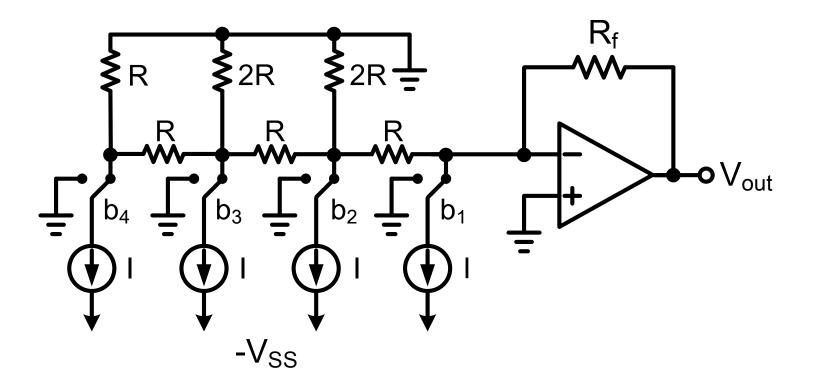
$$I_{r} = \frac{V_{ref}}{2R}$$

$$V_{out} = R_{F} \sum_{i=1}^{N} \frac{b_{i} I_{r}}{2^{i-1}} = V_{ref} \left(\frac{R_{F}}{R}\right) \sum_{i=1}^{N} \frac{b_{i}}{2^{i}}$$

$$V_{out} = R_{F} \sum_{i=1}^{N} \frac{b_{i} I_{r}}{2^{i-1}} = V_{ref} \left(\frac{R_{F}}{R}\right) \sum_{i=1}^{N} \frac{b_{i}}{2^{i}}$$

$$V_{out} = R_{F} \sum_{i=1}^{N} \frac{b_{i} I_{r}}{2^{i-1}} = V_{ref} \left(\frac{R_{F}}{R}\right) \sum_{i=1}^{N} \frac{b_{i}}{2^{i}}$$

$$V_{out} = R_{F} \sum_{i=1}^{N} \frac{b_{i} I_{r}}{2^{i-1}} = V_{ref} \left(\frac{R_{F}}{R}\right) \sum_{i=1}^{N} \frac{b_{i}}{2^{i}}$$


- Current ratio is still large
  - ◆ Large ratio of switch sizes

## R-2R-Based DAC (Cont.)

- B₁ is 1 & all other bits are 0
  - $\bullet$  V<sub>out</sub>=(R<sub>F</sub>/R)(V<sub>ref</sub>/2)
- B<sub>2</sub> is 1 & all other bits are 0
  - $\bullet$   $V_{out} = (R_F/R)(V_{ref}/4)$
- B<sub>N-1</sub> is 1 & all other bits are 0
  - $V_{out} = (R_F/R)(V_{ref}/2^{N-1})$
- B<sub>N</sub> is 1 & all other bits are 0
  - $\bullet$  V<sub>out</sub>=(R<sub>F</sub>/R)(V<sub>ref</sub>/2<sup>N</sup>)
- Multiplying DAC (ref. p.12-47~12-48)
  - ◆ Use varying analog signal V<sub>a</sub> instead of fixed reference voltage V<sub>ref</sub>

### R-2R-Based DAC (Cont.)

- R-2R ladder DAC with equal currents through switches
  - Slower since the internal nodes exhibit some voltage swings(as opposed to the previous configuration where internal nodes all remain at fixed voltage)

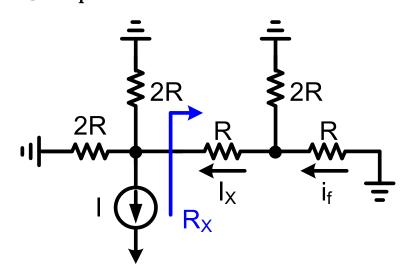


## R-2R-Based DAC (Cont.)

through R<sub>f</sub> is:

• Assume only  $b_1 = 1$ ,

Assume only  $b_2 = 1$ ,

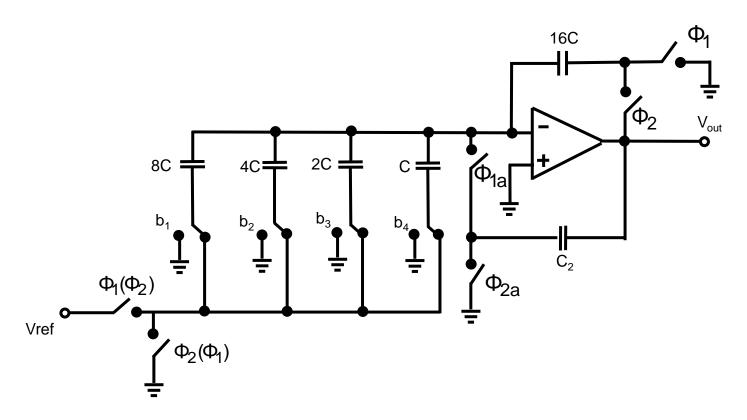

Assume only  $b_3 = 1$ ,

the current drawn through  $R_f$  is I the current drawn through  $R_f$  is I/2 the equivalent circuitto find the current

$$R_{X}=R+\frac{2}{3}R = \frac{5}{3}R$$

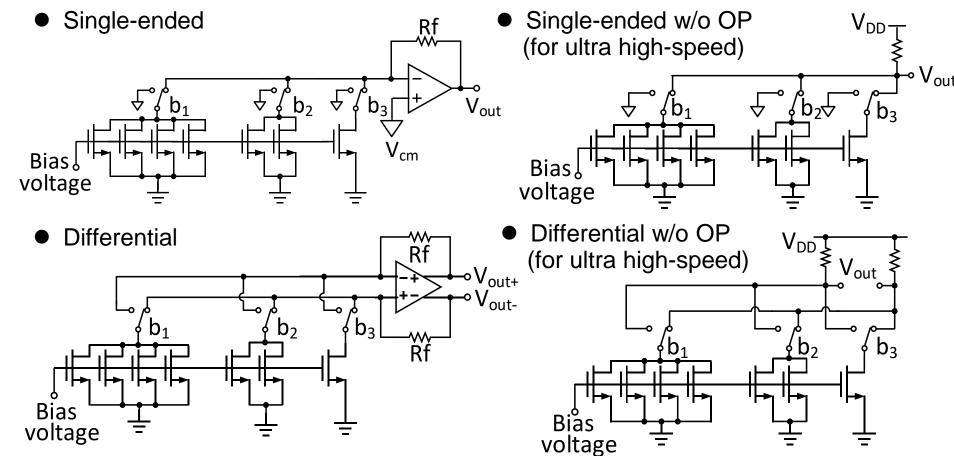
$$I_{X}=I \times \frac{(2R||2R)}{(2R||2R)+\frac{5}{3}R} = \frac{3}{8}I$$

$$i_{f}=\frac{2R}{2R+R}I_{X} = \frac{1}{4}I$$



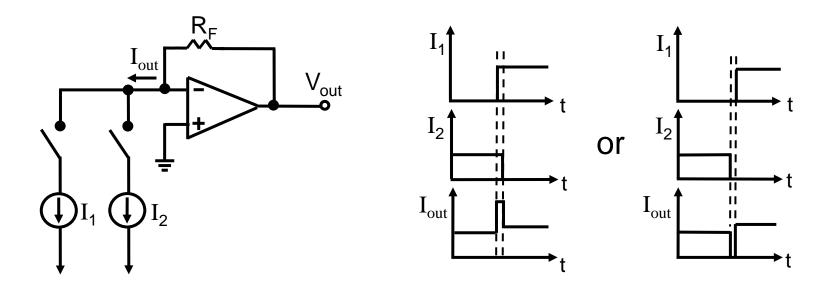

• With similar analysis, it can be shown that the current through  $b_4 \& R_f$  is I/8. Therefore,

$$V_{out} = 2R_f \times I(2^{-1}b_1 + 2^{-2}b_2 + 2^{-3}b_3 + 2^{-4}b_4)$$


### Charge-Redistribution Switched-Capacitor DAC

- Insensitive to OPAMP input-offset voltage, 1/f noise, and finite amplifier gain
- An additional sign bit can be realized by interchanging the clock phases (shown in parentheses)




### **Current-Mode DAC**

- High-speed
- Switch current to output or to ground
   The output current is converted to a voltage through R<sub>F</sub>
- Upper portion of current source always remains at ground potential (w/ OP)



### **Glitches**

- A major limitation during high-speed operation
- Mainly the result of different delays occurring when switching different signals
- Example: 01111.....1--->1000 .....0
  - ◆ I₁ represents the MSB current, and I₂ represents the sum of (N-1) LSB currents.
  - ◆ MSB current turns off slightly early, causing a glitch of zero current

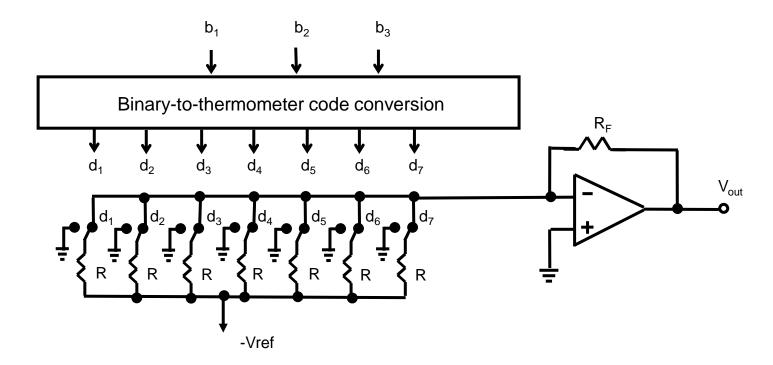


### Glitches (Cont.)

- Glitch disturbance can be reduced by
  - ◆ Limiting the bandwidth (placing a capacitor across R<sub>F</sub>)
    This method slows down the circuit.
  - Using a sample and hold on the output signal.
  - ◆ Modifying some or all of the digital word from a binary code to a thermometer code. (The most popular method.)

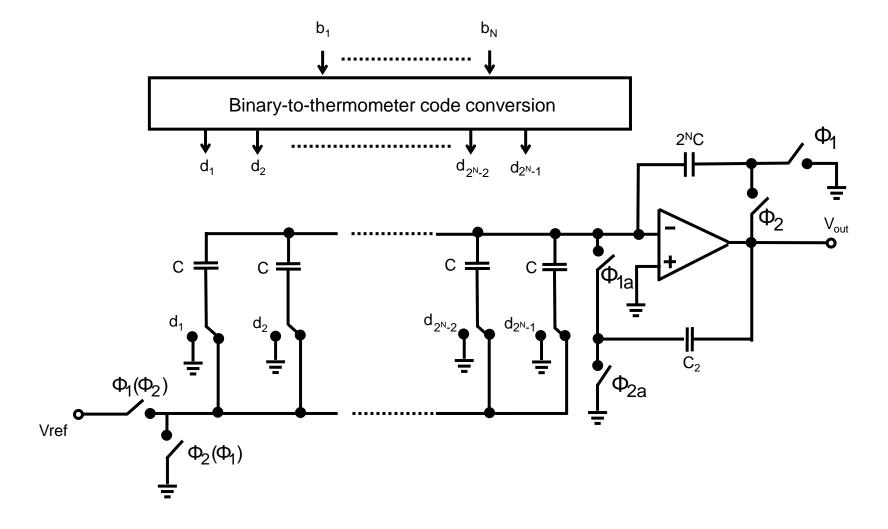
### Thermometer-Code DACs

Digitally recode the input to a thermometer-code equivalent


Thermometer-code representations for 3-bit binary values

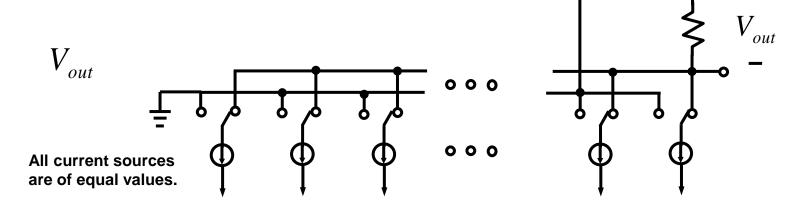
|         | Binary |    |    | Thermometer Code |    |    |    |    |    |    |
|---------|--------|----|----|------------------|----|----|----|----|----|----|
| Decimal | b1     | b2 | b3 | d1               | d2 | d3 | d4 | d5 | d6 | d7 |
| 0       | 0      | 0  | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  |
| 1       | 0      | 0  | 1  | 0                | 0  | 0  | 0  | 0  | 0  | 1  |
| 2       | 0      | 1  | 0  | 0                | 0  | 0  | 0  | 0  | 1  | 1  |
| 3       | 0      | 1  | 1  | 0                | 0  | 0  | 0  | 1  | 1  | 1  |
| 4       | 1      | 0  | 0  | 0                | 0  | 0  | 1  | 1  | 1  | 1  |
| 5       | 1      | 0  | 1  | 0                | 0  | 1  | 1  | 1  | 1  | 1  |
| 6       | 1      | 1  | 0  | 0                | 1  | 1  | 1  | 1  | 1  | 1  |
| 7       | 1      | 1  | 1  | 1                | 1  | 1  | 1  | 1  | 1  | 1  |

- Advantages over its binary-weighted counterpart
  - ◆ Small DNL errors
  - Guaranteed monotonicity
  - Reduced glitching noise
- Does not increase the size of the analog circuitry compared to a binaryweighted approach

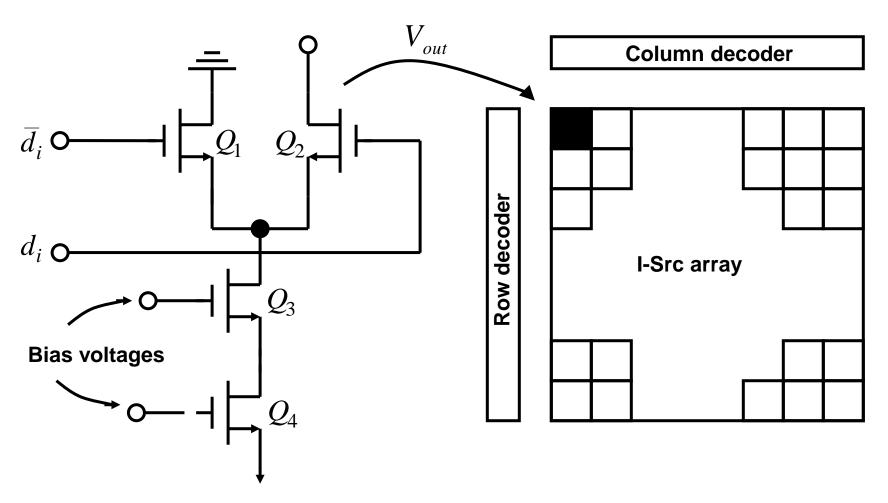

## Thermometer-Code DACs (Cont.)

- Total area required by the transistor switches is the same (compared to binary-weighted)
  - All transistor switches are of equal sizes since they all pass equal currents
- Examples
  - Thermometer-code resistor DAC




# Thermometer-Code DACs (Cont.)

◆ Thermometer-code charge-redistribution DAC

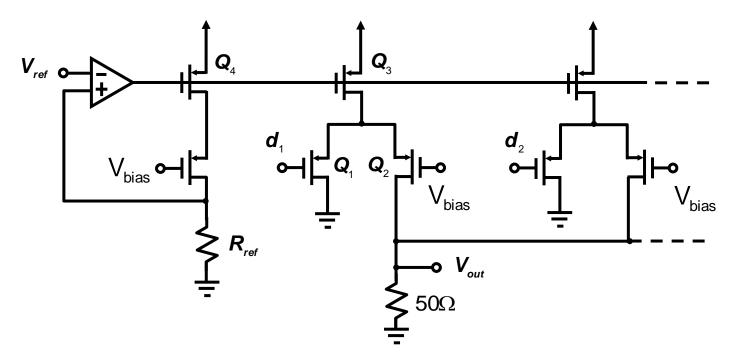



#### Thermometer-Code Current-Mode DAC

- Row and column decoders
- Inherent monotonicity
- Small DNL errors
  - ◆ INL errors depend on the placement of the current sources
- In high-speed applications
  - The output current feeds directly into an off-chip 50Ω or 75Ω resistor, rather than an output OPAMP.
  - ◆ Cascode current sources are used to reduce current-source variation due to voltage changes in V<sub>out</sub>



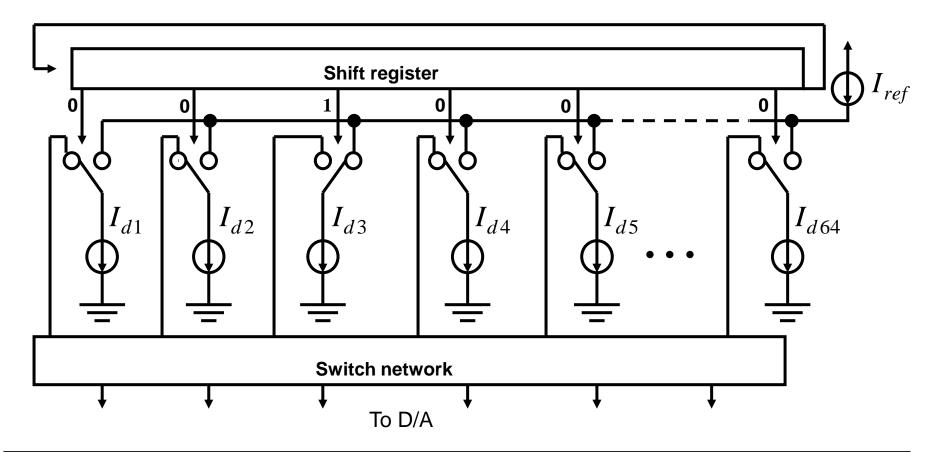
### Thermometer-Code Current-Mode DAC (Cont.)



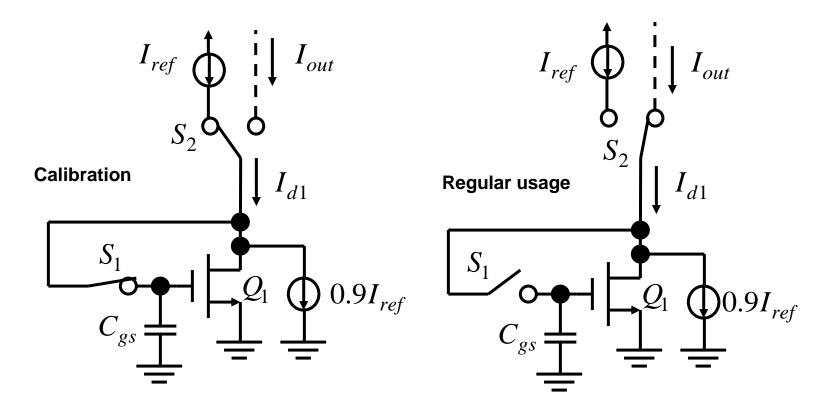

- [1] T. Miki, "An 80-MHz CMOS D/A converter," IEEE J. Solid-State Circuits, vol. SC-21, no. 6, pp. 983-988, Dec. 1986.
- [2] L. Letham, "Larsen, R.E.A high-performance CMOS 70-MHz palette/DAC", IEEE Journal of Solid-State Circuits, Volume 22, Issue 6, pp:1041-1047, Dec 1987.
- [3] K. K. Chi et al., "A CMOS triple 100Mbit/s video D/A converter with shift registers and color map," IEEE J. Solid-State Circuits, vol. SC-21, no. 6, pp. 989-995, Dec. 1986

### Thermometer-Code Current-Mode DAC (Cont.)

- Precisely timed edges are needed
  - If both  $d_i$  and  $d_i$  are low simultaneously, the drain of  $Q_3$  is pulled low and the circuit takes longer time to respond.
  - If both  $\overline{d}_i$  and  $d_i$  are high simultaneously,  $V_{out}$  is shorted to ground.
- To avoid the use of the two logic levels, the gate of Q<sub>2</sub> should be connected to a dc bias voltage


### Thermometer-Code Current-Mode DAC (Cont.)




- Can be clocked at the maximum rate without the need for precisely timed edges
- Q<sub>2</sub> and Q<sub>3</sub> effectively form a cascode current source when they drive current to the output.
- To maximize speed, the voltage swing at the common connection (e.g. Q<sub>1</sub>, Q<sub>2</sub> and Q<sub>3</sub>) of the current switches should be small.

### **Dynamically Matched Current Sources**

- A method for realizing very well-matched current sources (up to 16-bit accuracy) for audio DACs
- Continuously and cyclically calibrate MSB portions
- 16-bit example



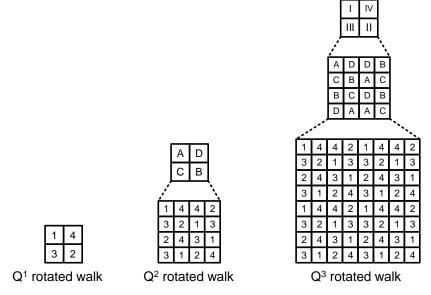
## Dynamically Matched Current Sources (Cont.)



- 6MSBs were realized using a thermometer code
- Since the accuracy requirements are reduced for the remaining bits, a binary array was used in their implementation.

# Dynamically Matched Current Sources (Cont.)

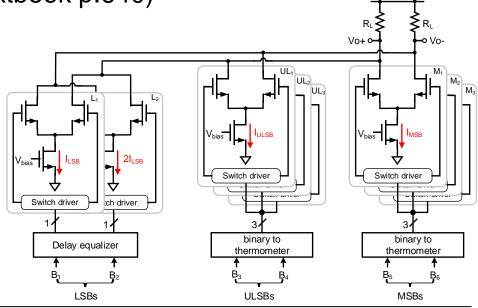
- 64 accurately matched current sources for the 6 MSBs
  - Current sources are calibrated
  - Dynamically setting current sources
  - Even though only 63 are required, the extra one is needed so that DAC can continuously operate when one of them is being calibrated
- Major limitation in matching 64 current sources is due to the differences in clock feedthrough and charge injection switches S<sub>i</sub>
  - ◆ The best way is to minimize them
    - ▶ Large C<sub>gs</sub> and large V<sub>gs</sub> of Q<sub>1</sub>
    - > Q<sub>1</sub> only source a small current
- Large C<sub>gs</sub> to minimize leakage current effect before current sources are recalibrated
- Dummy transistor can be added to S<sub>i</sub>
- Other methods to minimize these errors are referred to switched-current (SI) papers


## Dynamic Element Matching (DEM)

- Motivation: Repeated selection on the same mismatch elements
   Accumulated error & Distortion
- DEM Policy: Balancing the selected times of each element
  - ◆ Reduction of repeated pattern → Eliminating distortion
  - ◆ Purely digital circuit for element selection → Scaling friendly
  - Less power and area consumption than calibration
- Popular DEM algorithms
  - Data weighted averaging (DWA)



### Layout Placement for Gradient Error Compensation


- Gradient error → Mismatch between each current cell
- Layout technique to compensate gradient error
  - Partitioning of single current cell into multiple smaller segments
  - ◆ Balancing of current segments placement → Cancel mismatch
- Can be applied with DEM simultaneously for smaller output errors
- Example of a Q<sup>N</sup> rotated walk switching scheme[1]



[1] D. Lee, Y. Lin, and T. Kuo, "Nyquist-rate current-steering digital-to-analog converters with random multiple data-weighted averaging technique and Q<sup>N</sup> rotated walk switching scheme," *IEEE Trans. Circuits Syst. II, Exp. Briefs*, vol. 53, no. 11, pp. 1264–1268, Nov. 2006.

### **Hybrid Converters**

- Combine the advantages of different approaches
- It's quite common to use a thermometer-code approach for the top few MSBs while using a binary-scaled technique for the lower LSBs
  - Glitching is significantly reduced and accuracy is high
  - Circuit area is saved with a binary-scaled approach for LSBs
- Examples
  - ◆ Resistor-capacitor hybrid DAC (Refer to p.12-19)
  - ◆ Segmented DAC (Refer to textbook p.640)
  - The DAC is segmented into the 2 most significant bits (MSBs), 2 upper least significant bits (ULSBs) and 2 least significant bits (LSBs)
  - 2. The current weighting of the segments are  $I_{MSB}=16I_{LSB}$  and  $I_{ULSB}=4I_{LSB}$

